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Purpose: Children with Hirschsprung disease (HD) who have a history of enterocolitis (HAEC) have a shift in
colonic microbiota, many of which are necessary for short chain fatty acid (SCFA) production. As SCFAs play a
critical role in colonic mucosal preservation, we hypothesized that fecal SCFA composition is altered in children
with HAEC.
Methods: A multicenter study enrolled 18 HD children, abstracting for history of feeding, antibiotic/probiotic
use, and enterocolitis symptoms. HAEC statuswas determined per Pastor et al. criteria (12). Fresh feces were col-
lected for microbial community analysis via 16S sequencing as well as SCFA analysis by gas chromatography–
mass spectrometry.
Results: Nine patients had a history of HAEC, and nine had never had HAEC. Fecal samples from HAEC children
showed a 4-fold decline in total SCFA concentration vs. non-HAEC HD patients. We then compared the relative

composition of individual SCFAs and found reduced acetate and increased butyrate in HAEC children. Finally,
we measured relative abundance of SCFA-producing fecal microbiota. Interestingly, 10 of 12 butyrate-
producing genera as well as 3 of 4 acetate-producing genera demonstrated multi-fold expansion.
Conclusion:ChildrenwithHAEChistory have reduced fecal SCFAs and altered SCFAprofile. These findings suggest
a complex interplay between the colonicmetabolome and changes inmicrobiota, whichmay influence the path-
ogenesis of HAEC.

© 2016 Published by Elsevier Inc.
1. Background

Hirschsprung-associated enterocolitis (HAEC) is a life-threatening
complication of congenital aganglionic megacolon, or Hirschsprung
disease (HD).While surgical pull-through achieves satisfactory restora-
tion of functional intestinal continuity in most patients, up to 40% of
children experience at least one episode of HAEC after surgery [1]. De-
spite being the primary cause of morbidity for children with HD, the
of interest.
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pathophysiology of HAEC is poorly understood. Several contributing
factors have been identified, including dysfunctional host immunity, di-
minished epithelial barrier function, and altered gut microbiota, al-
though no unifying causative agent has been identified [2].

A microbial etiology of HAEC has been postulated since initial re-
ports of elevated Clostridium difficile toxin titers in children with HAEC
[3], although carriage rates have since proven highly variable [4]. Anal-
ysis of changes in the gut microbiome using molecular microbiological
techniques has shown decreased colonization of Bifidobacterium and
Lactobacillus in children with HDwho developed HAEC [5], while geno-
mic approaches have found increased bacterial population diversity
during HAEC episodes in children with HD [6], yet modest differences
in children with a history of HAEC [7]. Similar findings have been
noted in animal models of HD using neural crest cell specific endothelin
receptor B (Ednrb) knockout mice [8]. At the genus level, Ednrb
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knockout mice demonstrated decreased Lactobacillus and increased
Bacteroides and Clostridium prior to enterocolitis. These findings suggest
that disequilibrium in the gut microbiome – or dysbiosis –may result in
an altered microbial ecosystem that leads to HAEC development.

The mechanisms by which altered colonic microbiota relate to the
development of HAEC is not known. One important physiologic role of
gut bacteria is the production of short chain fatty acids (SCFAs). Com-
plex oligosaccharides and other organic, indigestible fiber matter not
absorbed in the upper intestinal tract are fermented by the anaerobic
microbial community of the colon, producing SCFAs (primarily acetate,
propionate, and butyrate) and gas [9]. These SCFAs, of which butyrate is
the best-studied, play a key role inmaintaining gut homeostasis and ep-
ithelial integrity [10]. Butyrate serves as a principal energy source for
colonocytes, regulates host gene expression via histone deacetylase in-
hibition [11]. This latter role has led to both an increase in IL-10 produc-
tion and an anti-inflammatory role by inhibiting NF-ĸB signaling [12].
We hypothesized that children with a history of HAEC would have al-
tered fecal SCFA composition, as well as disequilibrium of SCFA-
producing microbiota.

This study was designed to evaluate the fecal SCFA makeup of pa-
tients who had completed definitive surgical treatment for HD. We
compared 9 children with a history of at least one episode of HAEC to
9 children with no episodes of HAEC. We first performed gas
chromatography–mass spectrometry (GC-MS) based quantification of
fecal SCFA contents, and then compared this to 16S-based microbiota
analysis of the same samples to elucidate the relationship between an
altered microbiome and SCFA production.

2. Methods

2.1. Patient selection

This was a multi-institution study of children younger than 18 years
of age who had completed definitive pull-through surgical treatment
for a histopathological diagnosis of HD. Twenty children were enrolled
by four member institutions of the HAEC Collaborative Research
Group (HCRG): Cedars-Sinai Medical Center (CSMC), Los Angeles, CA;
Astrid Lindgren Children's Hospital, Karolinska University Hospital,
Stockholm, Sweden; Children's Hospital Los Angeles, Los Angeles, CA;
Children's Hospital of Oakland, Oakland, CA. Of these, 10 children had
a history of HD without documented enterocolitis, and 10 had at least
one episode of HAEC as defined by Pastor et al. criteria [13]. Two of
these 20 children were excluded from analysis owing to the presence
of a diverting ileostomy and active HAEC at the time of stool collection,
respectively. Thus, a total of 9 HD and 9 HAEC samples were analyzed.
Medical records were reviewed and parent interview was performed
using standardized questionnaires. Data collected included demo-
graphics, medical/surgical history, diet in the first year of life, medica-
tions including antibiotics, probiotic use, and enterocolitis symptoms.
This study was approved by the CSMC institutional review board (IRB
no. CR00008054) as a multicenter study, as well as individual approval
by all participating sites, and the University of Michigan IRB
(HUM00079878). Stool was collected within one week of enrollment
and immediately snap-frozen at −80 °C in air-tight containers to pre-
vent the loss of volatile SCFAs. Frozen sample aliquots were shipped to
the University of Michigan for SCFA analysis and to CSMC for bacterial
DNA isolation.

2.2. Fecal SCFA analysis

Sample extraction was performed using aqueous extraction solvent
containing 3% 1 M HCl (v/v) and isotope-labeled internal standards
(d7-buytric acid and d11-hexanoic acid). Samples were then homoge-
nized and centrifuged. Supernatantswere transferred to newEppendorf
tubes for extraction by diethyl ether. After layer separation, the upper
layer was transferred to an autosampler vial for GC-MS analysis. GC
(Agilent 6890, Wilmington, DE) separation was performed using a ZB-
Wax plus column, 0.25 μm× 0.25 mm× 30m (Phenomenex, Torrance,
CA). A single quadrupole mass spectrometer (Agilent, 5973 inert MSD)
was used to identify and quantify SCFAs using Agilent Masshunter soft-
ware, version B.06 [14]. Absolute quantities of SCFAs were normalized
to sample mass.

2.3. Bacterial DNA isolation and amplicon preparation

Fecal samples were suspended in 50 mM Tris buffer (pH 7.5) con-
taining 1 mM EDTA, 0.2% β-mercaptoethanol (Sigma) and 1000 U/ml
of lyticase (Sigma). The mix was incubated at 37 °C for 30 min, and
DNA was isolated using QIAamp DNA Stool Mini Kit (Qiagen). Bacterial
16S rRNA gene amplicons spanning variable regions 1–4 were generat-
ed in 20 μL PCR reactions using 20 ng of fecal DNA with 25 cycles using
high-fidelity Phusion Polymerase (New England Biolabs, Beverly, MA)
at 52.7 °C annealing using with degenerate 8F (AGAGTTTGATCM
TGGCTCAG) and R357 (CTGCTGCCTYCCGTA) primers. All PCR reactions
were purified using Agencourt AmPure Magnetic Beads (Beckman), re-
suspended in 20 μL of nuclease-free water and quantified using a Qubit
fluorometer (Invitrogen, Carlsbad, CA).

2.4. 16S sequencing

Paired-end adapters with unique indexes were ligated to 100 ng of
16S amplicons and used to generate Ion Torrent sequencing libraries
using the Ion Xpress Library Kit (Life Technologies, Carlsbad, CA). Li-
brary enrichment was performed with 10 cycles of PCR and purified
using Agencourt Ampure Magnetic Beads (Beckman). All libraries
were subjected to quality control using qPCR, DNA 1000 Bioanalyzer
(Agilent), and Qubit (Life Technologies, Carlsbad, CA). Pooled libraries
were assayed on Agilent Bioanalyzer (Santa Clara, CA) to check final
sizing and KAPA Biosciences qPCR for quantitation. 16S samples were
multiplexed and sequenced on the Ion Torrent PGM on a 318 chip
with 400 bp chemistry. 250 single-end sequencing-by-synthesis was
performed using the MiSeq Illumina sequencer (Illumina, San Diego,
CA). Torrent reads shorter than 200 bp, or not containing the designed
16S primers (N2 nt mismatches) were discarded. 300 bp sequences of
remaining high-quality reads were aligned to the Greengenes reference
database (February 2011 release) using BLAST v2.2.22 in QIIME v1.5
wrapper [15]with an identity percentage ≥97% to select the operational
taxonomic units (OTUs). Taxonomy for each sequence was assigned
using the Ribosomal Database Project (RDP) classifier v2.2.

2.5. Statistical analysis

Statistical analysis was performed using GraphPad Prism 5
(GraphPad Software, Inc., San Diego, CA). Comparison between two
groups used the two-tailed, unpaired Student's T-test. All results are
expressed as mean ± standard deviation unless otherwise specified. A
p value of b0.05 was considered significant.

3. Results

3.1. Patient characteristics

The two groups (HD and HAEC) each included 9 patients, with an
equal distribution of 8 males and 1 female (Table 1). Median age was
2.7 years (3 months to 8 years) for all children, 2.3 years for the HAEC
group, and 3.5 years for the HD group (p= 0.40). There were no signif-
icant differences in length of aganglionosis, non-HAEC complications,
early feeding type, or probiotics received. While no children in the HD
group received antibiotics within 2months of stool collection, three pa-
tients in the HAEC group had received antibiotics (two for prior HAEC
treatment, and one for sickle cell prophylaxis). Trisomy 21 was present
in one patient in the HD group and two patients in the HAEC group.



Table 1
Patient demographic characteristics.

Demographics HD HAEC

N 9 9
Male 8 8
Median age (years) 2.3 3.5
Trisomy 21 1 2
HD characteristics
Rectosigmoid transition zone 8 8
Postop complicationsa 0 0

Dietb

Breast milk 5 5
Formula 7 7

Medications
Probioticsc 4 3
Antibioticsd 0 3

a Complications occurring within 30 days of pull-through operation, not including
HAEC.

b Diet in the first year of life.
c Probiotics included Lactobacillus spp. and Bifidobacterium spp.
d Received within 2 months prior to stool collection.
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3.2. Fecal SCFA composition

Total fecal SCFA composition of children with a history of HAEC was
4-fold lower than that of HD patients without a history of HAEC
(56.98 ± 42.30 mM/g stool vs. 255.20 ± 259.70 mM/g; p = 0.038;
Fig. 1A). The composition of individual SCFAs was then secondarily ex-
amined and was markedly altered in HAEC children. The concentration
HD

HAEC
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Fig. 1. (A) Fecal SCFA concentration was significantly reduced in HAEC children versus those w
with a history of HAEC and thosewith no history of HAEC. (C) Histograms demonstrating the fec
bers are labeled on the X axis and expressed as relative SCFA abundance per each subject. *p b
of each SCFA detected by GC/MS in each group is shown in Table 2. Fecal
samples from theHAEC group had a significantly lower concentration of
acetate (34.04 ± 40.40 μM/g vs. 224.59 ± 266.12 μM/g; p = 0.049)
compared to the HD group, without a significant change in the absolute
concentration of other detected SCFAs. When comparing pooled SCFA
compositions (expressed as % of total SCFAs) between the two groups,
a significant reduction in the proportion of acetate (46.70 ± 29.89%
vs. 78.66± 19.08%; p= 0.016) and an increase in the proportion of bu-
tyrate (24.99 ± 15.64% vs. 6.75 ± 7.40%; p = 0.006; Fig. 1B) was found
in samples from the HAEC group versus the HD group.While individual
SCFA composition varied within the HD group, a preponderance of ace-
tate was present, followed by propionate and butyrate (Fig. 1C). In chil-
dren with a history of HAEC, however, the fecal SCFA profile became
markedly more varied between individuals (Fig. 1D), reflecting a loss
of acetate and increased proportion of other SCFAs.

3.3. SCFA-producing bacterial analysis

A detailed analysis of the broad changes in the fecal microbiome
using 16S analyses has been reported [7]; however, a subanalysis of
this datasetwas used in the present paper to examine the anaerobicmi-
crobiota which produce fecal SCFAs. Therefore, we compared the popu-
lations of SCFA-producing bacterial strains between HAEC and HD
group fecal samples. As the full fecal microbiome was dominated by
non-SCFA-producing bacteria, we identified genera that are known to
have butyrogenic [16] and acetogenic [17] strains. While no genus-
level changes reached statistical significance (Table 3), 10 out of
12 butyrogenic genera, identified by 16S sequencing, demonstrated
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Table 2
SCFA concentration in feces (μM/g).

HD (mean ± SD; n = 9) HAEC (mean ± SD; n = 9) p value

SCFAs (all) 255.20 ± 259.70 56.98 ± 42.30 0.038⁎
Acetate 224.59 ± 266.12 34.04 ± 40.40 0.049⁎
Propionate 16.93 ± 16.07 7.54 ± 5.81 0.119
Butyrate 9.35 ± 8.33 11.98 ± 12.82 0.613
Isobutyrate 1.35 ± 1.76 0.99 ± 0.98 0.605
Isovalerate 0.77 ± 1.20 0.45 ± 0.53 0.481
Valerate 1.90 ± 2.08 1.65 ± 2.03 0.800
Hexanoate 0.25 ± 0.32 0.30 ± 0.51 0.827
Heptanoate 0.01 ± 0.04 0.03 ± 0.05 0.359

SCFA = short chain fatty acid.
⁎ p b 0.05.
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elevated OTUs (operational taxonomic units) with a mean increase of
640% in the HAEC group compared with the HD group (Fig. 2A). This
mirrored the relative increase in butyrate found on SCFA analysis of
HAEC samples. Interestingly, despite a decrease in the proportion of ac-
etate in HAEC samples, 3 of 4 acetogenic genera had increased OTUs in
the HAEC group, with a mean increase of 1710% (Fig. 2B).

4. Discussion

HAEC is a highly morbid, though poorly understood complication of
HD. While a role for altered colonic microbiota has been suggested by
prior studies [5–8,18], the mechanism by which changes in bacterial
community characteristics might impact susceptibility to or influence
the development of HAEC is not clear. In this study, we found an over
4-fold reduction in total fecal SCFA content in children with a history
of HAEC compared to those who never had HAEC. This may suggest
that the colonic environment associated with HAEC is associated with
a microbial community that has reduced capacity to produce SCFAs.
Given that SCFAs are critical nutrients in themaintenance of healthy co-
lonic mucosa, the loss of SCFAsmay adversely affect enterocyte homeo-
stasis thereby contributing to HAEC development.

Specifically, acetatewas found in this study to be themostmarkedly
reduced among children with HAEC, although it has been less vigorous-
ly studied in the context of colitis pathophysiology. The SCFA butyrate is
also amajor source of energy for colonic epithelial cells andhas both im-
munomodulatory and anti-inflammatory properties [19–21]. Interest-
ingly, a reduction in butyrogenic bacteria has been shown in infectious
and active inflammatory colitis versus healthy subjects, suggesting a
role of intestinal dysbiosis and butyrate reduction in colitis develop-
ment [22,23]. Butyrate has also been shown to ameliorate the
Table 3
SCFA-producing bacterial genera in feces.

HD (meana ± SD;
n = 9)

HAEC (mean ± SD;
n = 9)

p value

Butyrogens (all) 4.9% ± 6.4% 4.2% ± 3.6% 0.783
Roseburia 4.0% ± 6.4% 1.5% ± 1.9% 0.282
Odoribacter 0.4% ± 0.9% 1.0% ± 1.9% 0.450
Faecalibacterium 0.2% ± 0.2% 0.3% ± 0.5% 0.499
Eubacterium 0.08% ± 0.2% 0.4% ± 0.7% 0.261
Subdoligranulum 0.05% ± 0.06% 0.3% ± 0.6% 0.221
Peptoniphilus 0.04% ± 0.1% 0.001% ± 0.002% 0.337
Coprococcus 0.03% ± 0.05% 0.2% ± 0.3% 0.135
Fusobacterium 0.01% ± 0.02% 0.2% ± 0.7% 0.354
Porphyromonas 0.01% ± 0.03% 0.02% ± 0.05% 0.750
Clostridium 0.008% ± 0.02% 0.2% ± 0.5% 0.303
Anaerotruncus 0.007% ± 0.01% 0.01% ± 0.03% 0.619
Megasphaera 0.002% ± 0.01% 0.04% ± 0.1% 0.337
Acetogens (all) 0.1% ± 0.2% 0.7% ± 0.9% 0.065
Eubacterium 0.08% ± 0.2% 0.3% ± 0.7% 0.261
Clostridium 0.008% ± 0.02% 0.2% ± 0.5% 0.303
Ruminococcus 0.003% ± 0.006% 0.1% ± 0.2% 0.053
Syntrophococcus 0.001% ± 0.003% b0.0001% 0.151

a Mean % of total operational taxonomic units (OTUs).
impairment of mucosal immunity seen with total parenteral nutrition
[24]. The trophic effect of mixed SCFAs (including acetate) has been
shown to exceed that of butyrate alone [25], it is likely that these
other SCFAs play an important role in colonic mucosal integrity.

This study found a relative increase in the proportion of fecal buty-
rate in children with a history of HAEC, and that the net loss of fecal
SCFAs found among these patients was primarily owing to a significant
reduction in acetate. However, the absolute butyrate concentration was
maintained, thereby making up a larger proportion of the remaining
SCFA pool. The significant net loss of acetate may represent decreased
acetate production via fermentation, or it may be the result of increased
acetate absorption by the colonic mucosa versus increased acetate me-
tabolism by colonic microbiota. Acetate is the most prevalent SCFA in
the healthy colon [26]. Bacteria isolated from the human colon have
been shown to utilize acetate for the production of butyrate [27]. This
might provide an explanation for the reduction in acetate found in chil-
dren with a history of HAEC. More metabolically active butyrogenic
strains, as observed in our study, may have led to lower acetate levels
in these patients, leading to a higher proportion of butyrate while de-
creasing the total concentration of SCFAs primarily via a reduction in re-
maining acetate.

While the etiology of the change in SCFA concentrations observed in
this study is unknown, the relative increase in butyrate productionmay
represent a compensatory mechanism to decrease the associated in-
flammatory state driven by other unknown factors. For example, epi-
thelial inflammation may lead to elevated butyrate requirements by
the colonic mucosa of children with a history of HAEC. This may drive
the relative expansion of butyrogenic strains in these patients, which
maintain butyrate concentrations, perhaps metabolizing acetate in this
process. Future work to specifically examine the metabolic activity of
the colonic microbiota and epithelium in children with HD might pro-
vide key insights into the pathogenesis of HAEC.

This is the first study to investigate SCFA changes in children with
HD compared with those with a history of HAEC,Ward et al. performed
a nuclear magnetic resonance (NMR)-based fecal metabolome analysis
using a mouse model of HD [18]. This untargeted investigation found a
significant reduction in formate, a minor SCFA product of bacterial fer-
mentation, in endothelin receptor B knockout mice prior to onset of
HAEC. However, no targeted SCFAmetabolomic analysis was performed
in thismouse study, and changes in other SCFAswere not characterized.
We did not detect formate in the SCFA analysis which was not surpris-
ing, given that formate is not a major human fecal SCFA; although the
parallel to the Ednrb-null mouse is noteworthy.

The types of SCFAs produced by bacterial fermentation are deter-
mined by the relative abundance of undigested carbohydrates, proteins,
and amino acids in the colonic lumen [26]. We therefore used matched
cohorts of patients with equal distributions of breast milk and formula
feeding histories within the first year of life to minimize differences in
nutrients onmicrobial community development. Amore detailed nutri-
tion assessment, quantifying caloric intake with protein:carbohydrate
ratio at the time of sample collection was not performed, although
this may have detected differences in oral intake between the two
groups. Another variable whichmay impact SCFA production is gut mo-
tility – as shorter colonic transit has been shown to increase SCFA pro-
duction [28]. While no patients had active HAEC at the time of sample
collection, colonic transit time was not assessed in this study.

While probiotic prophylaxis has been shown to decrease the risk of
other inflammatory diseases of the intestine such as necrotizing entero-
colitis [29], such intervention has not been shown to reduce the risk of
HAEC in children [30]. This study suggests that the altered microbiota
seen with HAEC may mediate their influence on the colonic mucosa
via dysfunctional SCFA metabolism. Future work will be required to
better understand how the complex interplay between diet, colonic
bacteria, andmucosal metabolism in the setting of HD leads to a unique
SCFA profile in children with a history of HAEC. As butyrate enemas
have shown promise in the treatment of colitis [26], a therapeutic
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role may exist for such therapy directed at normalization of the colonic
SCFA profile in the prevention of HAEC, or perhaps by delivering sub-
strate (nondigestible fibers) for increased butyrate production by this
altered microbiome.

This study demonstrates a strong association between prior epi-
sodes of HAEC and an altered SCFA profile, however, it does not estab-
lish the initiating cause. It is possible that prior HAEC episodes lead to
the altered microbiome and resultant SCFA changes, perhaps contribut-
ing to further episodes of HAEC. A prospective study of patients after
surgical correction of HD without prior HAEC would address this ques-
tion by comparing changes in themicrobiome and SCFAprofile between
patients who do and do not later develop HAEC.

A limitation of this study is a lack of long-term antibiotic history,
prior to the 2-month window before sample collection. Patients with a
history of HAEC may have received several courses of antibiotics to
treat prior HAEC episodes, whichmay have influenced the development
of an altered colonic microbial community. Post-hoc analysis of SCFA
profiles after exclusion of the three patients who had received antibi-
otics in the HAEC group demonstrated continued reduction in total
SCFA content, aswell as consistent changes in acetate and butyrate con-
tent. Another limitation of this study is the small sample size of each
group. While this study is the first to date to investigate SCFA content
and related microbiota in humans with HD, a more robustly powered
study may have detected more significant changes in SCFA concentra-
tions as well as genus-level microbial shifts. Additionally, this study
evaluated fecal microbial changes as a proxy for direct measurement
of colonic microbiota. Substantial variation has been reported between
fecal and colonic mucosa-associated microbiomes [31]. Though more
invasive specimen collection would be required for colonic microbiome
and metabolome assessment, such an investigation might reveal more
physiologically relevant data. Finally, bacterial 16S sequencing in this
study did not allow identification beyond the genus level. The identifi-
cation of specific species with known capacity to produce SCFAs was
therefore not performed, but rather the genera including these strains
were identified. Future workmight be directed at complete genome se-
quencing to confirm the ability of specific strains to produce butyrate,
acetate, and other SCFAs.

In summary, children with HAEC history were found to have mark-
edly reduced fecal SCFAs, and an altered SCFA profile. These findings
suggest a complex interplay between altered local environment and
changes in intestinal microbiota, whichmay influence the pathogenesis
of HAEC.
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Appendix A. Discussions

Presented by Farokh R. Demehri, Ann Arbor, MI

UNIDENTIFIED SPEAKER This is really interesting. The thing thatweworry
about in the kids who have recurrent enterocolitis, we have al-
ways thought of it as a stasis problem. Which comes first? Do
you have the altered microbiome because you have stasis, or do
you have –which is the chicken and which is the egg here?

FAROKH DEMEHRI Right. That's a great question. I think this study is
really a hypothesis-generating study because of these two
groups there was only one patient in the enterocolitis group
who demonstrated stricture and stasis and required a dila-
tion. None of the others did, but you are right that is often
thought to be a contributing factor. I think going forward we
need to understand actually what is the motility of these pa-
tients and then what is the function of the bacteria that we
are finding in these patients?

BRADWARNER (St. Louis, MO) My question sort of gets to the metab-
olome and you focus on basically on short-chain fatty acids,
but there are obviously a lot of other things that the bacteria
are metabolizing to include amino acids and other things in
carbohydrate metabolism that may play a role as well. If you
focus specifically on short-chain fatty acids, which is an obvi-
ous first start – that is the fuel for the colonocytes. Have you
looked at these other factors?

FAROKH DEMEHRI Thank you. That is an excellent question. Actually
when we had these samples we had to decide are we going to
do a targeted metabolomic analysis or untargeted. We decided
to start with targeted because as you mentioned this is a good
first step, but what we hope to do is an untargeted analysis
and that might generate all kinds of other questions about not
justwhat thesebacteria are able toproducebut alsowhat the in-
terplay is between the epithelium and the bacteria. Thank you.
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